topic网址(topic 官网)〔topic官方网站〕

  2000年早期,Robbie Allen在写一本关于网络和编程的书的时间 ,深有感触。他发现,互联网很不错,但是资源并不美满 。当时 候 ,博客已经开始盛行 起来。但是,Youtube还不是很广泛 ,Quora、 Twitter和播客同样用者甚少。

  在他转向人工智能和呆板 学习10年龄 后 ,局面发生了天翻地覆的变革 :网上资源非相称 丰富,以至于很多 人出现了选择困难,不知道该从那边 开始(和克制 )学习!

  为了使各人 可以或许 更加便利地利用 这些资源 ,Robbie Allen欣赏 查察 各种各样的资源,把它们打包整理了出来 。AI科技大本营在此借花献佛,和各人 共同分享这些资源。通过它们 ,你将会对人工智能和呆板 学习有一个根本 的认知。

  资源目次 :

  □ 着名 研究者

  □ 研究机构

  □ 视频课程

  □ YouTube

  □ 博客

  □ 媒体作家

  □ 册本

  □ Quora主题栏

  □ Reddit

  □ Github库

  □ 播客

  □ 实事通讯媒体

  □ 集会 会议

  □ 论文

  研究者

  大多数着名 的人工智能研究者在网络上的曝光率还是 很高的 。下面罗列 了20位着名 学者,以及他们的个人网站链接,维基百科链接,推特主页 ,Google学术主页,Quora主页。他们中相称 一部分 人在Reddit或Quora上面参加 了问答。

  ■Sebastian Thrun

  个人官网:

  https://robots.stanford.edu/

  Wikipedia:

  https://en.wikipedia.org/wiki/Sebastian_Thrun

  Twitter:

  https://twitter.com/SebastianThrun

  Google Scholar:

  https://scholar.google.com/citations?user=7K34d7cAAAAJhl=enoi=ao

  Quora:

  https://www.quora.com/profile/Sebastian-Thrun

  Reddit AMA:

  https://www.reddit.com/r/IAmA/comments/v59z3/iam_sebastian_thrun_stanford_professor_google_x/

  ■Yann LeCun

  个人官网:

  https://yann.lecun.com/

  Wikipedia:

  https://en.wikipedia.org/wiki/Sebastian_Thrun

  Twitter:

  https://twitter.com/ylecun?

  Google Scholar:

  https://scholar.google.com/citations?user=WLN3QrAAAAAJhl=en

  Quora:

  https://www.quora.com/profile/Yann-LeCun

  Reddit AMA:

  https://www.reddit.com/r/MachineLearning/comments/3y4zai/ama_nando_de_freitas/

  ■Nando de Freitas

  个人官网:

  https://www.cs.ubc.ca/~nando/

  Wikipedia:

  https://en.wikipedia.org/wiki/Nando_de_Freitas

  Twitter:

  https://twitter.com/NandoDF

  Google Scholar:

  https://scholar.google.com/citations?user=nzEluBwAAAAJhl=en

  Reddit AMA:

  https://www.reddit.com/r/MachineLearning/comments/3y4zai/ama_nando_de_freitas/

  ■Andrew Ng

  个人官网:

  https://www.andrewng.org/

  Wikipedia:

  https://en.wikipedia.org/wiki/Andrew_Ng

  Twitter:

  https://twitter.com/AndrewYNg

  Google Scholar:

  https://scholar.google.com/citations?use

  Quora:

  https://www.quora.com/profile/Andrew-Ng"

  Reddit AMA:

  https://www.reddit.com/r/MachineLearning/comments/32ihpe/ama_andrew_ng_and_adam_coates/

  ■Daphne Koller

  个人官网:

  https://ai.stanford.edu/users/koller/

  Wikipedia:

  https://en.wikipedia.org/wiki/Daphne_Koller

  Twitter:

  https://twitter.com/DaphneKoller?lang=en

  Google Scholar:

  https://scholar.google.com/citations?user=5Iqe53IAAAAJ

  Quora:

  https://www.quora.com/profile/Daphne-Koller

  Quora Session:

  https://www.quora.com/session/Daphne-Koller/1

  ■Adam Coates

  个人官网:

  https://cs.stanford.edu/~acoates/

  Twitter:

  https://twitter.com/adampaulcoates

  Google Scholar:

  https://scholar.google.com/citations?user=bLUllHEAAAAJhl=en"

  Reddit AMA:

  https://www.reddit.com/r/MachineLearning/comments/32ihpe/ama_andrew_ng_and_adam_coates/

  ■Jürgen Schmidhuber

  个人官网:

  https://people.idsia.ch/~juergen/

  Wikipedia:

  https://en.wikipedia.org/wiki/J%C3%BCrgen_Schmidhuber

  Google Scholar:

  https://scholar.google.com/citations?user=gLnCTgIAAAAJhl=en

  Reddit AMA:

  https://www.reddit.com/r/MachineLearning/comments/2xcyrl/i_am_j%C3%BCrgen_schmidhuber_ama/

  ■Geoffrey Hinton

  Wikipedia:

  https://en.wikipedia.org/wiki/Geoffrey_Hinton

  Google Scholar:

  https://www.cs.toronto.edu/~hinton/

  Reddit AMA:

  https://www.reddit.com/r/MachineLearning/comments/2lmo0l/ama_geoffrey_hinton/

  ■Terry Sejnowski

  个人官网:

  https://www.salk.edu/scientist/terrence-sejnowski/

  Wikipedia:

  https://en.wikipedia.org/wiki/Terry_Sejnowski

  Twitter:

  https://twitter.com/sejnowski?lang=en

  Google Scholar:

  https://scholar.google.com/citations?user=m1qAiOUAAAAJhl=en

  Reddit AMA:

  https://www.reddit.com/r/IAmA/comments/2id4xd/we_are_barb_oakley_terry_sejnowski_instructors_of/

  ■Michael Jordan

  个人官网:

  https://people.eecs.berkeley.edu/~jordan/

  Wikipedia:

  https://en.wikipedia.org/wiki/Michael_I._Jordan

  Google Scholar:

  https://scholar.google.com/citations?user=yxUduqMAAAAJhl=en"

  Reddit AMA:

  https://www.reddit.com/r/MachineLearning/comments/2fxi6v/ama_michael_i_jordan/

  ■Peter Norvig

  个人官网:

  https://norvig.com/

  Wikipedia:

  https://en.wikipedia.org/wiki/Peter_Norvig

  Google Scholar:

  https://scholar.google.com/citations?user=Ol0vcWgAAAAJhl=en

  Reddit AMA:

  https://www.reddit.com/r/blog/comments/b8aln/peter_norvig_answers_your_questions_ask_me/

  ■Yoshua Bengio

  个人官网:

  https://www.iro.umontreal.ca/~bengioy/yoshua_en/

  Wikipedia:

  https://en.wikipedia.org/wiki/Yoshua_Bengio

  Google Scholar:

  https://scholar.google.com/citations?user=kukA0LcAAAAJhl=en

  Quora:

  https://www.quora.com/profile/Yoshua-Bengio

  Reddit AMA:

  https://www.reddit.com/r/MachineLearning/comments/1ysry1/ama_yoshua_bengio/

  ■Ina Goodfellow

  个人官网:

  https://www.iangoodfellow.com/

  Wikipedia:

  https://en.wikipedia.org/wiki/Ian_Goodfellow

  Twitter:

  https://twitter.com/goodfellow_ian

  Google Scholar:

  https://scholar.google.com/citations?user=iYN86KEAAAAJhl=en

  Quora:

  https://www.quora.com/profile/Ian-Goodfellow

  Quora Session:

  https://www.quora.com/session/Ian-Goodfellow/1

  ■Andrej Karpathy

  个人官网:

  https://karpathy.github.io/

  Twitter:

  https://twitter.com/karpathy

  Google Scholar:

  https://scholar.google.com/citations?user=l8WuQJgAAAAJhl=en

  Quora:

  https://www.quora.com/profile/Andrej-Karpathy

  Quora Session:

  https://www.quora.com/session/Andrej-Karpathy/1

topic网址(topic 官网) topic网址(topic 官网)〔topic官方网站〕 新闻资讯

  ■Richard Socher

  个人官网:

  https://www.socher.org/

  Twitter:

  https://twitter.com/RichardSocher

  Google Scholar:

  https://scholar.google.com/citations?user=FaOcyfMAAAAJhl=en

  Interview:

  https://www.kdnuggets.com/2015/10/metamind-mastermind-richard-socher-deep-learning-interview.html

  ■Demis Hassabis

  个人官网:

  https://demishassabis.com/

  Wikipedia:

  https://en.wikipedia.org/wiki/Demis_Hassabis

  Twitter:

  https://twitter.com/demishassabis

  Google Scholar:

  https://scholar.google.com/citations?user=dYpPMQEAAAAJhl=en

  Interview:

  https://www.bloomberg.com/features/2016-demis-hassabis-interview-issue/

  ■Christopher Manning

  个人官网:

  https://nlp.stanford.edu/~manning/

  Twitter:

  https://twitter.com/chrmanning

  Google Scholar:

  https://scholar.google.com/citations?user=1zmDOdwAAAAJhl=en"

  ■Fei-Fei Li

  个人官网:

  https://vision.stanford.edu/people.html

  Wikipedia:

  https://en.wikipedia.org/wiki/Fei-Fei_Li

  Twitter:

  https://twitter.com/drfeifei

  Google Scholar:

  https://scholar.google.com/citations?user=1zmDOdwAAAAJhl=en"

  Ted Talk:

  https://www.ted.com/talks/fei_fei_li_how_we_re_teaching_computers_to_understand_pictures/tran?language=en

  ■François Chollet

  个人官网:

  https://scholar.google.com/citations?user=VfYhf2wAAAAJhl=en

  Twitter:

  https://twitter.com/fchollet

  Google Scholar:

  https://scholar.google.com/citations?user=VfYhf2wAAAAJhl=en

  Quora:

  https://www.quora.com/profile/Fran%C3%A7ois-Chollet

  Quora Session:

  https://www.quora.com/session/Fran%C3%A7ois-Chollet/1

  ■Dan Jurafsky

  个人官网:

  https://web.stanford.edu/~jurafsky/

  Wikipedia:

  https://en.wikipedia.org/wiki/Daniel_Jurafsky

  Twitter:

  https://twitter.com/jurafsky

  Google Scholar:

  https://scholar.google.com/citations?user=uZg9l58AAAAJhl=en

  ■Oren Etzioni

  个人官网:

  https://allenai.org/team/orene/

  Wikipedia:

  https://en.wikipedia.org/wiki/Oren_Etzioni

  Twitter:

  https://twitter.com/etzioni

  Google Scholar:

  https://scholar.google.com/citations?user=XF6Yk98AAAAJhl=en

  Quora:

  https://scholar.google.com/citations?user

  Reddit AMA:

  https://www.reddit.com/r/IAmA/comments/2hdc09/im_oren_etzioni_head_of_paul_allens_institute_for/

  机 构

  网络上有大量的着名 机构致力于推进人工智能范畴 的研究和发展 。

  以下列出的是同时拥有官方网站/博客和推特账号的机构。

  ■OpenAI

  官网:https://openai.com/

  Twitter:https://twitter.com/OpenAI

  ■DeepMind

  官网:https://deepmind.com/

  Twitter:https://twitter.com/DeepMindA

  ■Google Research

  官网:https://research.googleblog.com/

  Twitter:https://twitter.com/googleresearch

  ■AWS AI

  官网:https://aws.amazon.com/blogs/ai/

  Twitter:https://twitter.com/awscloud

  ■Facebook AI Research

  官网:https://research.fb.com/category/facebook-ai-research-fair/

  ■Microsoft Research

  官网:https://www.microsoft.com/en-us/research/

  Twitter:https://twitter.com/MSFTResearch

  ■Baidu Research

  官网:https://research.baidu.com/

  Twitter:https://twitter.com/baiduresearch?lang=en

  ■IntelAI

  官网:https://software.intel.com/en-us/ai

  Twitter:https://twitter.com/IntelAI

  ■AI2

  官网:https://allenai.org/

  Twitter:https://twitter.com/allenai_org

  ■Partnership on AI

  官网:https://www.partnershiponai.org/

  Twitter:https://twitter.com/partnershipai

  视频课程

  以下列出的是一些免费的视频课程和教程。

  ■Coursera

  — Machine Learning (Andrew Ng):

  https://www.coursera.org/learn/machine-learning#syllabus

  ■Coursera

  — Neural Networks for Machine Learning (Geoffrey Hinton):

  https://www.coursera.org/learn/neural-networks

  ■Udacity

  — Intro to Machine Learning (Sebastian Thrun):

  https://classroom.udacity.com/courses/ud120

  ■Udacity

  — Machine Learning (Georgia Tech):

  https://www.udacity.com/course/machine-learning--ud262

  ■Udacity

  ——Deep Learning (Vincent Vanhoucke):

  https://www.udacity.com/course/deep-learning--ud730

  ■Machine Learning (mathematicalmonk):

  https://www.youtube.com/playlist?list=PLD0F06AA0D2E8FFBA

  ■Practical Deep Learning For Coders

  ——Jeremy Howard Rachel Thomas:

  https://course.fast.ai/start.html

  ■Stanford CS231n

  ——Convolutional Neural Networks for Visual Recognition (Winter 2016) :

  https://www.youtube.com/watch?v=g-PvXUjD6qglist=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA

  (class link):https://cs231n.stanford.edu/

  ■Stanford CS224n

  ——Natural Language Processing with Deep Learning (Winter 2017) :

  https://www.youtube.com/playlist?list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6

  (class link):https://web.stanford.edu/class/cs224n/

  ■Oxford Deep NLP 2017 (Phil Blunsom et al.):

  https://github.com/oxford-cs-deepnlp-2017/lectures

  ■Reinforcement Learning (David Silver):

  https://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

  ■Practical Machine Learning Tutorial with Python (sentdex):

  https://www.youtube.com/watch?list=PLQVvvaa0QuDfKTOs3Keq_kaG2P55YRn5vv=OGxgnH8y2NM

  YouTube

  以下,我罗列 了一些YoutTube频道和用户 ,它们的重要 内容是人工智能大概 呆板 学习 。这里按照受欢迎 程度 罗列 如下:

  ■sentdex

  (225K subscribers, 21M views):

  https://www.youtube.com/user/sentdex

  ■Artificial Intelligence A.I.

  (7M views):

  https://www.youtube.com/channel/UC-XbFeFFzNbAUENC8Ofpn3g

  ■Siraj Raval

  (140K subscribers, 5M views):

  https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A

  ■Two Minute Papers

  (60K subscribers, 3.3M views):

  https://www.youtube.com/user/keeroyz

  ■DeepLearning.TV

  (42K subscribers, 1.7M views):

  https://www.youtube.com/channel/UC9OeZkIwhzfv-_Cb7fCikLQ

  ■Data School

  (37K subscribers, 1.8M views):

  https://www.youtube.com/user/dataschool

  ■Machine Learning Recipes with Josh Gordon

  (324K views):

  https://www.youtube.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal

  ■Artificial Intelligence — Topic

  (10K subscribers):

  https://www.youtube.com/channel/UC9pXDvrYYsHuDkauM2fLllQ

  ■Allen Institute for Artificial Intelligence (AI2)

  (1.6K subscribers, 69K views):

  https://www.youtube.com/channel/UCEqgmyWChwvt6MFGGlmUQCQ

  ■Machine Learning at Berkeley

  (634 subscribers, 48K views):

  https://www.youtube.com/channel/UCXweTmAk9K-Uo9R6SmfGtjg

  ■Understanding Machine Learning — Shai Ben-David

  (973 subscribers, 43K views):

  https://www.youtube.com/channel/UCR4_akQ1HYMUcDszPQ6jh8Q

  ■Machine Learning TV

  (455 subscribers, 11K views):

  https://www.youtube.com/channel/UChIaUcs3tho6XhyU6K6KMrw

  博 客

  ■Andrej Karpathy

  博客:https://karpathy.github.io/

  Twitter:https://twitter.com/karpathy

  ■i am trask

  博客:https://iamtrask.github.io/

  Twitter:https://twitter.com/iamtrask

  ■Christopher Olah

  博客:https://colah.github.io/

  Twitter:https://twitter.com/ch402

  ■Top Bots

  博客:https://www.topbots.com/

  Twitter:https://twitter.com/topbots

  ■WildML

  博客:https://www.wildml.com/

  Twitter:https://twitter.com/dennybritz

  ■Distill

  博客:https://distill.pub/

  Twitter:https://twitter.com/distillpub

  ■Machine Learning Mastery

  博客:https://machinelearningmastery.com/blog/

  Twitter:https://twitter.com/TeachTheMachine

  ■FastML

  博客:https://fastml.com/

  Twitter:https://twitter.com/fastml_extra

  ■Adventures in NI

  博客:https://joanna-bryson.blogspot.de/

  Twitter:https://twitter.com/j2bryson

  ■Sebastian Ruder

  博客:https://sebastianruder.com/

  Twitter:https://twitter.com/seb_ruder

  ■Unsupervised Methods

  博客:https://unsupervisedmethods.com/

  Twitter:https://twitter.com/RobbieAllen

  ■Explosion

  博客:https://explosion.ai/blog/

  Twitter:https://twitter.com/explosion_ai

  ■Tim Dettwers

  博客:https://timdettmers.com/

  Twitter:https://twitter.com/Tim_Dettmers

  ■When trees fall...

  博客:https://blog.wtf.sg/

  Twitter:https://twitter.com/tanshawn

  ■ML@B

  博客:https://ml.berkeley.edu/blog/

  Twitter:https://twitter.com/berkeleyml

  媒体作家

  以下是一些人工智能范畴 方向顶尖的媒体作家。

  ■Robbie Allen:

  https://medium.com/@robbieallen

  ■Erik P.M. Vermeulen:

  https://medium.com/@erikpmvermeulen

  ■Frank Chen:

  https://medium.com/@withfries2

  ■azeem:

  https://medium.com/@azeem

  ■Sam DeBrule:

  https://medium.com/@samdebrule

  ■Derrick Harris:

  https://medium.com/@derrickharris

  ■Yitaek Hwang:

  https://medium.com/@yitaek

  ■samim:

  https://medium.com/@samim

  ■Paul Boutin:

  https://medium.com/@Paul_Boutin

  ■Mariya Yao:

  https://medium.com/@thinkmariya

  ■Rob May:

  https://medium.com/@robmay

  ■Avinash Hindupur:

  https://medium.com/@hindupuravinash

  书 籍

  以下列出的是关于呆板 学习、深度学习和天然 语言处理 惩罚 的书。这些书都是免费的,可以通过网络获取大概 下载。

  ——呆板 学习

  ■Understanding Machine Learning From Theory to Algorithms:

  https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf

  ■Machine Learning Yearning:

  https://www.mlyearning.org/

  ■A Course in Machine Learning:

  https://ciml.info/

  ■Machine Learning:

  https://www.intechopen.com/books/machine_learning

  ■Neural Networks and Deep Learning:

  https://neuralnetworksanddeeplearning.com/

  ■Deep Learning Book:

  https://www.deeplearningbook.org/

  ■Reinforcement Learning: An Introduction:

  https://incompleteideas.net/sutton/book/the-book-2nd.html

  ■Reinforcement Learning:

  https://www.intechopen.com/books/reinforcement_learning

  ——天然 语言处理 惩罚

  ■Speech and Language Processing (3rd ed. draft):

  https://web.stanford.edu/~jurafsky/slp3/

  ■Natural Language Processing with Python:

  https://www.nltk.org/book/

  ■An Introduction to Information Retrieval:

  https://nlp.stanford.edu/IR-book/html/htmledition/irbook.html

  ——数 学

  ■Introduction to Statistical Thought:

  https://people.math.umass.edu/~lavine/Book/book.pdf

  ■Introduction to Bayesian Statistics:

  https://www.stat.auckland.ac.nz/~brewer/stats331.pdf

  ■Introduction to Probability:

  https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf

  ■Think Stats: Probability and Statistics for Python programmers:

  https://greenteapress.com/wp/think-stats-2e/

  ■The Probability and Statistics Cookbook:

  https://statistics.zone/

  ■Linear Algebra:

  https://joshua.smcvt.edu/linearalgebra/book.pdf

  ■Linear Algebra Done Wrong:

  https://www.math.brown.edu/~treil/papers/LADW/book.pdf

  ■Linear Algebra, Theory And Applications:

  https://math.byu.edu/~klkuttle/Linearalgebra.pdf

  ■Mathematics for Computer Science:

  https://courses.csail.mit.edu/6.042/spring17/mcs.pdf

  ■Calculus:

  https://ocw.mit.edu/ans7870/resources/Strang/Edited/Calculus/Calculus.pdf

  ■Calculus I for Computer Science and Statistics Students:

  https://www.math.lmu.de/~philip/publications/lectureNotes/calc1_forInfAndStatStudents.pdf

  Quora

  Quora对于人工智能和呆板 学习来说是一个非常好的资源 。很多 业界最顶尖的研究者会对Quora上某些题目 举行 答复 。以下,我罗列 了重要 的人工智能相干 的主题 ,你可以订阅假如 你想跟进这些内容。

  ■Computer-Science (5.6M followers):

  https://www.quora.com/topic/Computer-Science

  ■Machine-Learning (1.1M followers):

  https://www.quora.com/topic/Machine-Learning

  ■Artificial-Intelligence (635K followers):

  https://www.quora.com/topic/Artificial-Intelligence

  ■Deep-Learning (167K followers):

  https://www.quora.com/topic/Deep-Learning

  ■Natural-Language-Processing (155K followers):

  https://www.quora.com/topic/Natural-Language-Processing

  ■Classification-machine-learning (119K followers):

  https://www.quora.com/topic/Classification-machine-learning

  ■Artificial-General-Intelligence (82K followers)

  https://www.quora.com/topic/Artificial-General-Intelligence

  ■Convolutional-Neural-Networks-CNNs (25K followers):

  https://www.quora.com/topic/Artificial-General-Intelligence

  ■Computational-Linguistics (23K followers):

  https://www.quora.com/topic/Computational-Linguistics

  ■Recurrent-Neural-Networks (17.4K followers):

  https://www.quora.com/topic/Recurrent-Neural-Networks

  Reddit

  Reddit上的人工智能社区并没有Quora上的那么大,但是,Reddit上面依然有一些值得关注的资源 。Reddit有助于跟进最新的业界动态和研究盼望 ,而Quora便于举行 问答交换 。以下通过关注量罗列 了重要 的人工智能范畴 的subreddits。

  ■/r/MachineLearning (111K readers):

  https://www.reddit.com/r/MachineLearning

  ■/r/robotics/ (43K readers):

  https://www.reddit.com/r/robotics/

  ■/r/artificial (35K readers):

  https://www.reddit.com/r/artificial

  ■/r/datascience (34K readers):

  https://www.reddit.com/r/datascience

  ■/r/learnmachinelearning (11K readers):

  https://www.reddit.com/r/learnmachinelearning

  ■/r/computervision (11K readers):

  https://www.reddit.com/r/computervision

  ■/r/MLQuestions (8K readers):

  https://www.reddit.com/r/MLQuestions

  ■/r/LanguageTechnology (7K readers):

  https://www.reddit.com/r/LanguageTechnology

  ■/r/mlclass (4K readers):

  https://www.reddit.com/r/mlclass

  ■/r/mlpapers (4K readers):

  https://www.reddit.com/r/mlpapers

  Github

  人工智能范畴 最令人冲动 的缘故起因 之一是大多数项目都是开源的,而且可以通过Github得到 。假如 你必要 一些Python或Jupyter Notebooks实现的示例算法,在Github上有大量的这类教诲 资源。

  ■Machine Learning (6K repos):

  https://github.com/search?o=descq=topic%3Amachine-learning+s=starstype=Repositoriesutf8=%E2%9C%93

  ■Deep Learning (3K repos):

  https://github.com/search?q=topic%3Adeep-learningtype=Repositories

  ■Tensorflow (2K repos):

  https://github.com/search?q=topic%3Atensorflowtype=Repositories

  ■Neural Network (1K repos):

  https://github.com/search?q=topic%3Atensorflowtype=Repositories

  ■NLP (1K repos):

  https://github.com/search?utf8=%E2%9C%93q=topic%3Anlptype=Repositories

  播 客

  对人工智能举行 报道的播客数量 在不绝 地增长 ,一部分 关注最新的动态,一部分 关注人工智能教诲 。

  ■ConcerningAI

  官网:https://concerning.ai/

  iTunes:https://itunes.apple.com/us/podcast/concerning-ai-artificial-intelligence/id1038719211

  ■This Week in Machine Learning and AI

  官网:https://twimlai.com/

  iTunes:https://itunes.apple.com/us/podcast/this-week-in-machine-learning/id1116303051?mt=2

  ■The AI Podcast

  官网:https://blogs.nvidia.com/ai-podcast/

  iTunes:https://itunes.apple.com/us/podcast/the-ai-podcast/id1186480811

  ■Data Skeptic

topic网址(topic 官网) topic网址(topic 官网)〔topic官方网站〕 新闻资讯

  官网:https://dataskeptic.com/

  iTunes:https://itunes.apple.com/us/podcast/the-data-skeptic-podcast/id890348705

  ■Linear Digressions

  官网:https://itunes.apple.com/us/podcast/linear-digressions/id941219323

  iTunes:https://itunes.apple.com/us/podcast/linear-digressions/id941219323?mt=2

  ■Partially Dervative

  官网:https://partiallyderivative.com/

  iTunes:https://itunes.apple.com/us/podcast/partially-derivative/id942048597?mt=2

  ■O'Reilly Data Show

  官网:https://radar.oreilly.com/tag/oreilly-data-show-podcast

  iTunes:https://itunes.apple.com/us/podcast/oreilly-data-show/id944929220

  ■Learning Machines 101

  官网:https://www.learningmachines101.com/

  iTunes:https://itunes.apple.com/us/podcast/learning-machines-101/id892779679?mt=2

  ■The Talking Machines

  官网:https://www.thetalkingmachines.com/

  iTunes:https://itunes.apple.com/us/podcast/talking-machines/id955198749?mt=2

  ■Artificial Intelligence in Industry

  官网:https://techemergence.com/

  iTunes:https://itunes.apple.com/us/podcast/artificial-intelligence-in-industry-with-dan-faggella/id670771965?mt=2

  ■Machine Learning Guide

  官网:https://ocdevel.com/podcasts/machine-learning

  iTunes:https://itunes.apple.com/us/podcast/machine-learning-guide/id1204521130?mt=2

  局势 通讯媒体

  假如 你想相识 最新的业界消息和学术盼望 ,这里有大量的局势 通讯媒体供你选择 。

  ■The Exponential View:

  https://www.getrevue.co/profile/azeem

  ■AI Weekly:

  https://aiweekly.co/

  ■Deep Hunt:

  https://deephunt.in/

  ■O’Reilly Artificial Intelligence Newsletter:

  https://www.oreilly.com/ai/newsletter.html

  ■Machine Learning Weekly:

  https://mlweekly.com/

  ■Data Science Weekly Newsletter:

  https://www.datascienceweekly.org/

  ■Machine Learnings:

  https://subscribe.machinelearnings.co/

  ■Artificial Intelligence News:

  https://aiweekly.co/

  ■When trees fall…:

  https://meetnucleus.com/p/GVBR82UWhWb9

  ■WildML:

  https://meetnucleus.com/p/PoZVx95N9RGV

  ■Inside AI:

  https://inside.com/technically-sentient

  ■Kurzweil AI:

  https://www.kurzweilai.net/create-account

  ■Import AI:

  https://jack-clark.net/import-ai/

  ■The Wild Week in AI:

  https://www.getrevue.co/profile/wildml

  ■Deep Learning Weekly:

  https://www.deeplearningweekly.com/

  ■Data Science Weekly:

  https://www.datascienceweekly.org/

  ■KDnuggets Newsletter:

  https://www.kdnuggets.com/news/subscribe.html?qst

  会 议

  随着人工智能的崛起,与人工智能相干 的集会 会议 也在渐渐 增长 。这里罗列 一些重要 的集会 会议 。

  ——学术集会 会议

  ■NIPS (Neural Information Processing Systems):

  https://nips.cc/

  ■ICML (International Conference on Machine Learning):

  https://2017.icml.cc

  ■KDD (Knowledge Discovery and Data Mining):

  https://www.kdd.org/

  ■ICLR (International Conference on Learning Representations):

  https://www.iclr.cc/

  ACL (Association for Computational Linguistics):

  https://acl2017.org/

  ■EMNLP (Empirical Methods in Natural Language Processing):

  https://emnlp2017.net/

  ■CVPR (Computer Vision and PatternRecognition):

  https://cvpr2017.thecvf.com/

  ■ICCF(InternationalConferenceonComputerVision):

  https://iccv2017.thecvf.com/

  ——专业集会 会议

  ■O’Reilly Artificial Intelligence Conference:

  https://conferences.oreilly.com/artificial-intelligence/

  ■Machine Learning Conference (MLConf):

  https://mlconf.com/

  ■AI Expo (North America, Europe, World):

  https://www.ai-expo.net/

  ■AI Summit:

  https://theaisummit.com/

  ■AI Conference:

  https://aiconference.ticketleap.com/helloworld/

  论 文

  ——arXiv.org上特定范畴 论文集

  ■Artificial Intelligence:

  https://arxiv.org/list/cs.AI/recent

  ■Learning (Computer Science):

  https://arxiv.org/list/cs.LG/recent

  ■Machine Learning (Stats):

  https://arxiv.org/list/stat.ML/recent

  ■NLP:

  https://arxiv.org/list/cs.CL/recent

  ■Computer Vision:

  https://arxiv.org/list/cs.CV/recent

  ——Semantic Scholar搜刮 结果

  ■Neural Networks (179K results):

  https://www.semanticscholar.org/search?q=%22neural%20networks%22sort=relevanceae=false

  ■Machine Learning (94K results):

  https://www.semanticscholar.org/search?q=%22machine%20learning%22sort=relevanceae=false

  ■Natural Language (62K results):

  https://www.semanticscholar.org/search?q=%22natural%20language%22sort=relevanceae=false

  ■Computer Vision (55K results):

  https://www.semanticscholar.org/search?q=%22natural%20language%22sort=relevanceae=false

  ■Deep Learning (24K results):

  https://www.semanticscholar.org/search?q=%22deep%20learning%22sort=relevanceae=false

  别的 ,一个很好的资源是Andrej Karpathy维护的一个用于搜刮 论文的项目 。

  https://www.arxiv-sanity.com/

  ---------------------------------------

  ImageQ:专业的大数据服务应用平台

  登录www.imageq.cn,免费申请【产物 试用】